Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2262: 303-310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977485

RESUMO

RASSF1A is a Ras effector that promotes the anti-proliferative properties of Ras. It acts as a scaffold protein that regulates several pro-apoptotic signaling pathways, thereby linking Ras to their regulation. However, accumulating evidence suggests that RASSF1A functions as a regulator of other additional biological processes, such as DNA repair and transcription, thereby implicating Ras in the modulation of these biological processes. The mechanisms by which RASSF1A modulates these processes is not fully understood but likely involves interacting with other effectors associated with these functions and coordinating their activity. Thus, to fully understand how RASSF1A manifests its activity, it is critical to identify RASSF1A interacting partners.Unfortunately, the reagents available for the detection of RASSF1A are of poor quality and also exhibit low sensitivity. Here we describe an immunoprecipitation protocol, taking into consideration the limitations of currently available reagents, that can reliably detect the endogenous interaction between RASSF1A and its binding partners.


Assuntos
Proteínas de Transporte/metabolismo , Immunoblotting/métodos , Imunoprecipitação/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/metabolismo , Humanos
2.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348649

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Lung cancer is commonly driven by mutations in the RAS oncogenes, the most frequently activated oncogene family in human disease. RAS-induced tumorigenesis is inhibited by the tumor suppressor RASSF1A, which induces apoptosis in response to hyperactivation of RAS. RASSF1A expression is suppressed in cancer at high rates, primarily owing to promoter hypermethylation. Recent reports have shown that loss of RASSF1A expression uncouples RAS from apoptotic signaling in vivo, thereby enhancing tumor aggressiveness. Moreover, a concomitant upregulation of RAS mitogenic signaling upon RASSF1A loss has been observed, suggesting RASSF1A may directly regulate RAS activation. Here, we present the first mechanistic evidence for control of RAS activation by RASSF1A. We present a novel interaction between RASSF1A and the Ras GTPase Activating Protein (RasGAP) DAB2IP, an important negative regulator of RAS. Using shRNA-mediated knockdown and stable overexpression approaches, we demonstrate that RASSF1A upregulates DAB2IP protein levels in NSCLC cells. Suppression of RASSF1A and subsequent downregulation of DAB2IP enhances GTP loading onto RAS, thus increasing RAS mitogenic signaling in both mutant- and wildtype-RAS cells. Moreover, co-suppression of RASSF1A and DAB2IP significantly enhances in vitro and in vivo growth of wildtype-RAS cells. Tumors expressing wildtype RAS, therefore, may still suffer from hyperactive RAS signaling when RASSF1A is downregulated. This may render them susceptible to the targeted RAS inhibitors currently in development.

3.
J Cell Sci ; 133(3)2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041893

RESUMO

Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.


Assuntos
Neoplasias , Proteínas Ativadoras de ras GTPase , Apoptose , Proteínas Ativadoras de GTPase , Humanos , Neoplasias/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...